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bstract

Within the framework of the self-consistent field approximation and the static concentration waves approach, a statistical-thermodynamic descrip-
ion of D0 -type superstructure in Ti–Al alloy is developed. A model of order–disorder phase transformation is applied for the non-stoichiometric
19

ntermetallic Ti3Al phase. Interatomic-interaction parameters are estimated for both approximations. One model supposes temperature-independent
nteratomic-interaction parameters, while the other includes the temperature dependence of mixing energies. The partial phase diagrams (equilibrium
ompositions for the coexistent ordered �2-phase and disordered �-phase) are evaluated for both cases.

2007 Elsevier B.V. All rights reserved.
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. Introduction

Over the past few years, intermetallic compounds based on Ti
nd Al have been the subject of research due to their potential for
pplications in the aerospace and automobile industries [1–4].
ue to their corrosion stability and strength, these intermetallic

lloys attracted particular attention as suitable materials for high-
emperature applications.

The structure of �2-Ti3Al phase is related to the D019-
ype superstructure [5–15], which can be derived from the
exagonal closed-packed (h.c.p.) solid solution (�-Ti–Al) by

diffusion controlled ordering of Ti and Al atoms. The
rst step in understanding the microstructure and the diffu-
ion kinetics of the Ti–Al relaxation is the construction of
statistical-thermodynamic model and the estimation of the

nteratomic-interaction energy parameters of this system for
rbitrary interatomic distances (i.e. outside the framework of
he conventional Bragg–Williams approximation). In spite of

ome efforts [16], which have been made to describe the
tomic-ordering reaction in Ti3Al (� → �2), the statistical-
hermodynamic description for non-stoichiometric h.c.p. phase
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E-mail address: taras.radchenko@gmail.com (T.M. Radchenko).

2

l
o
b
u

925-8388/$ – see front matter © 2007 Elsevier B.V. All rights reserved.
oi:10.1016/j.jallcom.2006.12.149
as not been attempted. Only few experimental results and the-
retical descriptions have been obtained [9,17–19] to describe
he site occupation in Ti–Al alloys. Investigating symmetry of
nterchange energies, distribution functions for substitutional
uperstructures in h.c.p. lattices have been obtained in Ref. [20],
ut long-range order (LRO) parameters have not been calculated.
he distribution functions for atoms in the D019-type superstruc-

ure given in [6,21,22] and the image of D019-type superstructure
eported by [23] are wrong, in spite of the fact that coordinates
f the atoms are correctly [23] indicated.

The present paper is devoted to the theoretical description
f the phase transformation of the ordered intermetallic �2-
hase into the disordered �-phase and to the calculation of the
nteratomic-interaction parameters. The model is based on the
elf-consistent field (mean-field) approximation and the static
oncentration wave approach firstly proposed by Khachaturyan
24].

. Statistical-thermodynamic model

The hexagonal closed-packed lattice is a complicated Ising

attice, which can be considered as two interpenetrating hexag-
nal Bravais sublattices displaced with respect to each other
y the vector h = 2a1/3 + a2/3 + a3/2, where a1, a2, a3 are the
nit vectors of the h.c.p. lattice along the [1 0 0], [0 1 0], [0 0 1]

mailto:taras.radchenko@gmail.com
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where

w̃pq(k) =
∑

R

wpq(R − R′) e−ik·(R−R′), (3)
Fig. 1. Hexagonal close-packed lattice: perspective view (a) and top view (b).

irections, in the oblique system of coordinates (see Fig. 1).
ach crystal lattice site r can be described by two vectors R
nd hp (r = R + hp) [24]. Vector R refers to the unit-cell’s origin
osition, hp denotes the distance of a given site with respect to
he unit-cell’s origin, and p denotes the sublattice.

In the self-consistent field model, the configurational part
f the free energy of the h.c.p. binary A–B alloy based on the
omplicated Ising lattice can be written as [24]:

= 1

2

2∑
p,q=1

∑
R,R′

wpq(R − R′)Pp(R)Pq(R′)

+ kBT

2∑
q=1

∑
R

[Pq(R) ln Pq(R)

+ (1 − Pq(R)) ln(1 − Pq(R))], (1)

here the indexes p and q denote the sublattices (p, q = 1, 2).

B is the Boltzmann constant and T is the absolute temperature.
he single-site occupation-probability functions Pp(R) (Pq(R))

epresent the probability of finding a B atom at the site of the
th (qth) sublattice within the cell with the origin R. In the last
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quation, the summation is carried out over all unit-cells (R, R′)
nd all sublattices, i.e. over all Ising lattice sites. For a binary
olid solution, wpq(R − R′) defines the interchange energy [24],
hich known also as mixing energy:

pq(R − R′) = WAA
pq (R − R′) + WBB

pq (R − R′)

−2WAB
pq (R − R′). (2)

ere, WAA
pq , WBB

pq , WAB
pq are the pairwise interaction energies of

–A, B–B, A–B pairs of atoms of the unit-cells separated by a
istance |R − R′|. The radius-vector R is related to the basic vec-
ors as R = n1a1 + n2a2 + n3a3 with |a1| = |a2| = a0 and |a3| = c0.
1, n2, n3 are the integer ‘coordinates’ of the unit-cell positions
n the oblique system of coordinates of the h.c.p. lattice (see
igs. 1 and 2). Experimental values of the Ti3Al lattice parame-

ers are a0 = 0.289 nm and c0 = 0.464 nm [7], therefore the radii
f the first four coordination shells are as follows: r1 = 0.286 nm,
2 = 0.289 nm, r3 = 0.406 nm and r4 = 0.464 nm (Fig. 2).

For the h.c.p. lattice, interchange-energy matrix is
5,6,20,24]:

w̃pq(k)
∥∥ =

(
w̃11(k) w̃12(k)

w̃∗
12(k) w̃11(k)

)
,

ig. 2. Unit-cell of D019-type Ti3Al superstructure: perspective view (a) and
op view (b). White balls are Al atoms and dark balls are Ti atoms.
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τ
= ln

(c − η/4)(1 − c − 3η/4)

(c + 3η/4)(1 − c + η/4)
, (11)
24 T.M. Radchenko et al. / Journal of Al

= (k1, k2, k3) is a wave vector, w̃∗
12(k) is the complex conjugate

o w̃12(k). The D019-type superstructure (Fig. 2) is generated by
he superlattice wave vectors [5,6,20,24] k1 = πa∗

1 = ( 1
2 , 0, 0),

2 = πa∗
2 = (0, 1

2 , 0), k3 = π(a∗
1 + a∗

2) = ( 1
2 , 1

2 , 0); a∗
1 and a∗

2
re the basic reciprocal lattice vectors of the h.c.p. lattice along
he directions [1 0 0] and [0 1 0], respectively. The interchange-
nergy matrix has two eigenvalues:

1(k) = w̃11(k) + |w̃12(k)|, λ2(k) = w̃11(k) − |w̃12(k)|.
(4)

Using definition (3), one can obtain expressions for the ele-
ents of the interchange-energy matrix (3):

˜ 11(k) = w2(e2πik1 + e2πik2 + e−2πik1 + e−2πik2 + e2πi(k1+k2)

+ e−2πi(k1+k2)) + w4(e2πik3 + e−2πik3 ) + · · ·, (5)

˜ 12(k) = w1(1 + e−2πik3 + e−2πik1 + e−2πi(k1+k3)

+ e−2πi(k1+k2) + e−2πi(k1+k2+k3))

+ w3(e2πik2 + e2πi(k2−k3) + e−2πik2 + e−2πi(k2+k3)

+ e−2πi(2k1+k2) + e−2πi(2k1+k2+k3)) + · · · (6)

ere, w1, w2, w3, w4 are the interchange energies for the 1st,
nd, 3rd, 4th coordination shell with the radii r1, r2, r3, r4 shown
n Fig. 2.

Within the framework of the static concentration waves
pproach [24], the atoms’ distribution function, Pq(R), can be
epresented as a superposition of static concentration waves (as
ourier series):

q(R) = c + 1

2

∑
s

2∑
σ=1

ηs,σ

∑
js

(γs,σ(js)vσ(q, kjs ) eikjs ·R

+ γ∗
s,σ(js)v

∗
σ(q, kjs ) e−ikjs ·R), (7)

here c is a relative concentration of B atoms in the A1−cBc

lloy and vσ(q, k) exp(ikjs·R) is a static concentration wave. In
ormula (7), vσ(q, k) is a unit ‘polarization vector’ of the wave,
js is a wave vector, σ is a ‘polarization number’. The variable
s,σ represents the LRO parameter, which is equal to 0 and 1 in
he disordered and completely ordered states, respectively. The
oefficients γs,σ(js) determine the symmetry of the occupation
robabilities Pq(R), js denotes the wave vectors in the first Bril-
ouin zone of the star s. The star s is a set of wave vectors kjs,
hich can be obtained from the one wave vector by the applying

o it all operations of the symmetry group of the disordered solid
olution. In formula (7), the summation is carried out over all
ectors {js} of the star s. We can describe the atomic distribution
n the binary alloy by the one distribution function because of
A
q (R) + PB

q (R) ≡ 1.
Applying the static concentration wave method for the D019-

ype superstructure, we obtain) ( ) [ ( )

P1(R)

P2(R)
= c

1

1
+ 1

4
η ξ1

1

1
cos(πn1) w

n
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+ ξ2

(
1

−1

)
cos(πn2)

+ ξ3

(
1

−1

)
cos[π(n1 + n2)]

]
, (8)

here ξ1 = ξ2 = ξ3 = 1, ξ1 = −ξ2 = −ξ3 = 1, −ξ1 = ξ2 = −ξ3 = 1 or
ξ1 = −ξ2 = ξ3 = 1. The function (8) assumes two values, c − η/4

nd c + 3η/4, on all crystal lattice sites. Substituting expres-
ion (8) into the formula (1), we have the configurational free
nergy of D019-type ordered phase per atom as a function of
emperature, concentration and the LRO parameter:

ord = c2λ1(0)

2
+ 3η2λ2(k1)

32
+ kBT

4

×
[(

c + 3η

4

)
ln

(
c + 3η

4

)
+
(

1 − c − 3η

4

)

× ln

(
1 − c − 3η

4

)
+ 3

(
c − η

4

)
ln
(
c − η

4

)

+ 3
(

1 − c + η

4

)
ln
(

1 − c + η

4

)]
. (9)

The configurational free energy (per atom) of the disordered
hase (η ≡ 0) is

disord = c2λ1(0)

2
+ kBT [c ln c + (1 − c) ln(1 − c)]. (10)

To determine the equilibrium fields of the ordered (�2) and
isordered (�) phases, which is a part of the phase diagram of
he system Ti–Al, we need to determine the interaction energy
arameters, λ1(0) and λ2(k1), which enter into the free energy
xpressions. These energy values can be obtained from the radia-
ion (X-ray or thermal neutrons) scattering data. However, these

easurements apparently have not been done for Ti–Al alloys.
herefore, we chose the strategy of fitting energy parameters to
xperimental phase diagram [25].

. Calculated results

According to the experimental phase diagram [25] there is
concentration–temperature range, where the equilibrium state
f Ti–Al corresponds to an ordered intermetallic state (i.e. D019-
ype �2-phase). By the decreasing the Al concentration or/and
ncreasing the temperature, this ordered phase becomes unstable,
nd the disordered �-phase appears.

To calculate the equilibrium LRO parameter, we have to min-
mise the configurational free energy, F, with respect to the η.
or c = 1/4, such a procedure performed at different temperatures
ives branch A–B–C in Fig. 3. On the other hand, the equilib-
ium order parameter must satisfy the following condition for F
eing a minimum with respect to η:
here τ = kBT/|λ2(k1)| is a reduced temperature. Eq. (11) has
o simple analytic solution, but one can solve it numerically.
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Fig. 5. Temperature dependence of interatomic-interaction parameters, λ1(0)
(�) and λ2(k1) (�), for h.c.p. Ti–Al.

Fig. 6. Equilibrium long-range order parameter, η, vs. temperature in the
n
T
T

ig. 3. Equilibrium long-range order parameter, η, vs. reduced temperature, τ,
or the D019-type superstructure.

he solution, for a given c, has the form shown in Fig. 3 (branch
–B–D).

If we know the equilibrium LRO parameter, we can
alculate configurational free energy as a function of tem-
erature and concentration. The equilibrium compositions for
he coexistence of the ordered intermetallic �2-phase and
isordered �-phase can be determined numerically by the
ommon tangent construction. In this case, the values of
1(0) and λ2(k1) in expressions (9) and (10) are the fitting
arameters which have to be estimated. Using this procedure
ombined with the least-squares method, the phase relation-
hips were computed for two assumptions (Fig. 4). The first
pproximation yields the temperature-independent eigenvalues
f the interchange-energy matrix (λ1(0) ≈ 462.36 meV/atom,
2(k1) ≈ −555.91 meV/atom) relevant to the whole temperature
ange 600–1000 ◦C. The second gives temperature-dependent

alues (λ1(0) = λ1(0, T), λ2(k1) = λ2(k1, T)). The tempera-
ure dependences of λ1(0, T) and λ2(k1, T) are shown in
ig. 5.

ig. 4. Calculated and experimental phase diagrams of Ti–Al alloy: model with
emperature-independent interatomic-interaction parameters (�), model with
emperature-dependent ones (�) and experiment (©) [25].
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on-stoichiometric D019-type phases with compositions Ti0.84Al0.16 (– · –),
i0.83Al0.17 (···), Ti0.82Al0.18 (- - -), Ti0.81Al0.19 (– ·· –), Ti0.80Al0.20 (— · —),
i0.79Al0.21 (· · ·), Ti0.78Al0.22 (– – –) and Ti0.77Al0.23 (—).

The calculations were not extended above T = 1075 ◦C, since
t higher temperatures the Ti3Al-type phase already coexists
ith the b.c.c. �-phase.
Using the λ2(k1) values the temperature dependence of LRO

arameters in non-stoichiometric Ti3Al was calculated (Fig. 6).
igs. 3 and 6 demonstrate that the order–disorder phase transfor-
ation of D019-type superstructures into the disordered �-Ti–Al

olid solution is a first-order phase transition.

. Summary and conclusions

The study deals with a semi-phenomenological descrip-
ion of the order–disorder phase transformation of ordered
i3Al into the h.c.p. solid solution. The atomic configurations
f the ordered state are described by single-site occupation-
robability functions which have been calculated for the

019-type superstructure. The description is also applied to the
hase transformation to the �-Ti–Al solid solution using both
he self-consistent field approximation and the method of static
oncentration waves.
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By the computing the partial equilibrium Ti–Al phase dia-
ram, interatomic-interaction parameters were evaluated. For
he model with temperature-dependent interatomic-interaction
arameters, the computed phase boundaries almost coincide
ith the experimental findings. For the model with temperature-

ndependent interatomic-interaction parameters, there is a less
greement.

A change of lattice parameters, a0 and c0, with both
emperature and composition results in the change of
nteratomic-interaction energies which implicitly dependent on

and c. In particular, the thermal expansion, the temperature
ependence of elasticity, and the softening of oscillatory modes
re responsible for the temperature dependence of λ1(0) and
2(k1).

The order–disorder transformation of the intermetallic �2-
hase into the disordered �-phase is a first-order phase transition.

The findings eliminate the disagreement in the literature
s regards the atomic distribution functions for the D019-type
uperstructure. This work is the first step of the investigation of
inetics relaxation of non-equilibrium h.c.p. Ti–Al alloys. The
esults obtained for the interatomic-interaction parameters will
e used in the Önsager-type microscopic diffusion equations to
tudy the kinetics of precipitation in the ordered intermetallic
hases.
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